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We analytically explore the fluctuation of the work-induced entropy production of an externally perturbed
quantum harmonic oscillator interacting with several reservoirs. The quantum fluctuation of the work amounts
to a non-Gaussian fluctuation of the entropy production, which interpolates the Gaussian and the Poissonian
distributions at high- and low-temperature regimes. Also, it is shown that the corresponding fluctuation theo-
rem symmetry is rigorously satisfied.
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I. INTRODUCTION

In mesoscopic systems, dynamical variables show signifi-
cant fluctuations around its averages. Actually, a universal
symmetry called fluctuation theorem has been established for
various classical dynamics both for deterministic systems
�1–5� and locally detailed balanced stochastic systems
�6–15�. With suitable definitions of entropy production, fluc-
tuation theorem has been confirmed also in nonequilibrium
reaction theories �16–18�. The connection between fluctua-
tion theorem and the nonlinear response theory was also in-
tensively surveyed �18�.

On the other hand, the quantum extension of the fluctua-
tion theorem has been received considerable attentions
�19–32�. The main subject has been the derivation of the
symmetry relation by a suitable treatment of the quantum
fluctuation or the measurement schemes of the entropy pro-
duction. Among the various schemes for evaluating the en-
tropy production �19,22,30,32�, two-point measurement ap-
proach composed of the initial determination of the state, the
unitary time evolution, and the measurement of energy or
particle-number at the final time is well established. Two-
point measurement scheme reproduces the classical symme-
try of fluctuation theorem and full counting statistics in the
semiclassical regime �33�. Also, it is rigorously shown that
the characteristic function for the two-point measurement de-
pends only on the thermodynamic forces due to the conser-
vation law for a long time �22�. For further insights of two-
point measurement scheme, it is advantageous to more
explicitly evaluate the characteristic function.

The purpose of this paper is to envisage whether the
work-induced entropy production due to the external pertur-
bation satisfies the fluctuation theorem for the two-point
measurement scheme, and to investigate how the quantum
fluctuation affects the distribution of the corresponding en-
tropy production compared to the classical case. In order to
make clear the role of the external perturbation, we explore a
model, which is driven out of equilibrium also by thermody-
namic forces. For an exactly solvable model of a damped
harmonic oscillator interacting with several large reservoirs,
we concern with the work-induced entropy production, and
calculate its probability distribution. Especially, it is shown

that the quantum fluctuation amounts to a non-Gaussian
probability distribution, which interpolates the Gaussian- and
Poissonian-behaviors at high- and low-temperature regimes.
Fluctuation theorem is satisfied for this probability distribu-
tion.

This paper is organized as follows. Section II describes
our model of damped harmonic oscillator, and the time-
dependent total Hamiltonian is diagonalized. Also, the initial
stationary state is derived from a local equilibrium ensemble
at a remote past time. In Sec. III, we define the work-induced
entropy production due to the external perturbation and
present its characteristic function. In Sec. IV, we analytically
calculate the characteristic function of the work-induced en-
tropy production, and explore physically the statistical prop-
erties of the consequent non-Gaussian distribution.

II. MODEL

We analytically investigate the entropy production at a
nonequilibrium state of a temporally perturbed harmonic os-
cillator interacting with N large reservoirs r1 , . . . ,rN. Note
that hereafter, the total system including the reservoirs is
considered as isolated except for the external perturbation.
As ideal reservoirs, we consider assemblies of harmonic os-
cillators �35–38�. For the case of a single reservoir, our
model can be interpreted as a quantum counterpart of the
experiment on a colloidal particle dragged in water �34�. Our
scheme will be useful for small object confined in a har-
monic potential interacting with several electromagnetic
fields at different temperatures �38�. In the isothermal case,
there is no thermodynamic force such as temperature gradi-
ent, and it has been shown that work-induced entropy pro-
duction satisfies fluctuation theorem �11–13�.

Let us consider the total Hamiltonian

Ĥ�t� = ��â+â − ���â + â+�f�t� + �
j=1

N � dk��kjâkj
+ âkj

+ ��
j=1

N � dk�ukjââkj
+ + vkjâkjâ

+� . �1�

Here, � and �kj are the natural frequencies of the system and
jth reservoir oscillators with the annihilation operators â and
âkj, which satisfies �â , â+�=1, �â , âkj

+ �=0, and �âki , âk�j
+ �

=�ij��k−k��, respectively. The interaction between the sys-*monnai@aoni.waseda.jp
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tem and each jth reservoir is bilinear where the coupling
strengths satisfy ukj =vkj

� . f�t� presents the position of the
potential, which is initially located at the origin f�0�=0. The
external perturbation ���â+ â+�f�t� is interpreted as the po-

tential dragging with the velocity ḟ�t�. Indeed, a+a+ corre-
sponds to the position coordinate, and the energy stored in
the harmonic potential located at f�t� is proportional to �a
+a+−��f�t��2, and after the rotating wave approximation,
the operator part gives the perturbation term �35,38�. At the
initial time t=0, the center of the harmonic potential f starts
to move.

A. Normal modes

In this section, we derive the normal modes, which com-
pletely characterize the time evolution in the presence of the
external perturbation. Here, we show the outline of the deri-
vation, and for more details see also the similar analysis �36�
for the unperturbed case. First, we shall diagonalize the total
Hamiltonian by the normal modes �̂kj in the absence of ex-

ternal perturbation f�t��0, i.e., Ĥ= Ĥ�0�. Since the interac-
tion term � j=1

N 	dk��ukjaakj
+ +vkjakja

+� is quadratic, the cre-
ation of more than two particles from a particle is not
allowed. Therefore, the frequency renormalization is absent.
This observation is justified by the calculation of the normal
modes described below. The total Hamiltonian is diagonal-

ized as Ĥ=� j=1
N 	dk��kj�̂kj

+ �̂kj.
Next, we determine the normal modes. Since the equa-

tions of motion are linear

ȧ̂ = − i�â − i�
j=1

N � dkvkjâkj ,

ȧ̂kj = − i�kjâkj − iukjâ , �2�

the normal modes �̂kj are given as a linear combination of
these variables

�̂kj = âkj + bkjâ + �
m=1

N � dk�ckk�jmâk�m. �3�

Due to the linearity, the spectral distribution of the frequen-
cies �kj is the same for âkj and �̂kj.

Let us determine the coefficients bkj and ckk�jm. The time
derivative of �̂kj is calculated as

�̇̂kj =
1

i�
�̂kj,�
j=1

N � dk���k�j�̂k�j
+ �̂k�j� = − i�kj�̂kj . �4�

On the other hand, the time derivative of Eq. �3� is

�̇̂kj = ȧ̂kj + bkjȧ̂ + �
m=1

N � dk�ckk�jmȧ̂k�m. �5�

Equating Eqs. �4� and �5� and substituting Eq. �2�, the coef-
ficients are determined as

bkj = −
ukj

�−��kj�
,

ckk�jm = −
ukjvk�m

�−��kj���kj − �k�m − i0�
, �6�

where the dispersion function ����� is defined as

����� = � − � + �
n=1

N � dk�
�uk�n�2

� − �k�n � i0
. �7�

The sign of infinitesimally small imaginary part �i0 is cho-
sen so that the solution of the outgoing wave is selected.
Note that the dispersion function ����� has no zeros, and
there are no bound states. The normal modes are thus given
as

�̂kj = âkj −
ukj

�−��kj�
â − �

m=1

N

ukj� dk�
vk�m

�kj − �k�m − i0

âk�m

�−��k�j�
.

�8�

In terms of the normal modes, the annihilation operator of
the system â and those of reservoirs âkj are also expressed
linearly as

â = �
j=1

N � dk
− vkj

�+��kj�
�̂kj ,

âkj = �kj + �
m=1

N � dk�
ukj

�+��k�j�
vk�m

�kj − �k�m
�̂k�m. �9�

Let us next survey the externally perturbed case. The equa-
tion of motion for �̂kj�t� is

�̇̂kj�t� = − i�kj�̂kj�t� −
iukj

���−��kj�
f�t� . �10�

The solution is

�̂kj�t� = e−i�kjt�̂kj − �
0

t

ds
iukj

���−��kj�
f�s�e−i�kj�t−s�

= e−i�kjt�̂kj −
ukjf�t�

���kj�−��kj�
+ �

0

t

ds
ukj ḟ�s�e−i�kj�t−s�

���kj�−��kj�
.

�11�

Here, we have abbreviated the normal modes at initial time
t=0 as �̂kj�0�= �̂kj. Integrating by parts the second term of
the first equality, and using f�0�=0 the second equality is
obtained. Then the total Hamiltonian in the presence of the
perturbation is diagonalized as

Ĥ�t� = �
j=1

N � dk��kjÂkj
+ �t�Âkj�t� − �

j=1

N � dk
�ukj�2

�kj��+��kj��2
f�t�2,

�12�

with the time-dependent normal modes
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Âkj�t� = e−i�kjt�̂kj + �
0

t

ds
ukj

���−��kj��kj

e−i�kj�t−s� ḟ�s� .

�13�

Note that the last term of Eq. �12� does not appear in the
analysis of the entropy production given below. As explained
just below Eq. �1�, the external perturbation ���a+a+� de-
rives from the energy stored in the harmonic potential as the
operator part, and the term proportional to f�t�2 expresses the
c-number part which should be removed from Eq. �12� �35�.
This term does not appear in the position representation �19�.

B. Initial state

Here, we introduce the initial state at t=0. For this pur-
pose, we start with a local equilibrium state at far past time
t=−T and formally construct a stationary state at t=0. For
more details of underlying mathematics, see also an alge-
braic approach �25�. Suppose at a far past time t=−T, the
system and the reservoirs are prepared as mutually different
equilibrium states

	̂�− T� = 	̂s�− T� � 

j=1

N

	̂ j�− T� , �14�

with

	̂s�− T� =
e−
��â+â

Z
,

	̂ j�− T� =
1

Zj
exp�− 
 j� dk��kjâkj

+ âkj� , �15�

where 
 and 
 j are the inverse temperatures of the system
and the jth reservoir, and Z and Zj present the partition func-
tions of equilibrium.

Then, let us evolve 	̂�−T� under the unperturbed dynam-
ics f�t��0 until t=0. In the course of time evolution, a non-
equilibrium stationary state would be reached. The stationary
state is considered to be characterized only by inverse tem-
peratures of reservoirs 
 j, and that of the system 
 would not
appear. In order to clarify this point, we calculate the station-
ary distribution with the use of normal modes �9�. Equation
�15� is rewritten as

	̂s�− T� =
1

Z
exp�− 
���

j
� dk

��
j�
� dk�

vkjuk�j�

�+��kj��−��k�j��
�̂kj

+ �̂k�j�� ,

	̂ j�− T� =
1

Zj
exp
−� dk
 j��kj��̂kj

+ + �
m=1

N � dk�

�
vkj

�+��k�j�

uk�m

�kj − �k�m
�̂k�m

+ �
���̂kj + �

m=1

N � dk�
ukj

�−��k�j�
vk�m

�kj − �k�m
�̂k�m�� .

�16�

For the unperturbed dynamics, the normal mode at t=−T
evolves as UT�̂kjUT

+=ei�kjT�̂kj, where Ut is the unitary evo-
lution operator of the state during time t. With the use of this
relation, we calculate a characteristic function, i.e., the mean
of ei�c�a�0�+ca�0�+� with an arbitrary number c, to determine the
system state at t=0

Tr 	̂s�− T�ei�c�a�0�+ca�0�+�

= Tr 	̂s�− T�UT
+ei�c�a�−T�+ca�− T�+�UT

= Tr 	̂s�− T�exp�i
c��
j=1

N � dk
− vkj

�+��kj�

�e−i�kjT�kj + �H.c.���→ 1�T → �� . �17�

Here, we used that as T goes to infinity, the exponential
terms e�i�kjT becomes a rapidly oscillating function of fre-
quency. This fact suggests that the system density matrix is
described by unity at the stationary state t=0. The density
matrix of the reservoirs evolve as

UT	 j�− T�UT
+ =

1

Zj
exp
− 
 j��kj� dk�e−i�kjT�̂kj

+

+ �
m=1

N � dk�
vkj

�+��k�j�

uk�m

�kj − �k�m
e−i�k�mT�̂k�m

+ �
��ei�kjT�̂kj + �

m=1

N � dk�

�
ukj

�−��k�j�
vk�m

�kj − �k�m
ei�k�mT�̂k�m�� . �18�

In the exponent of UT	 j�−T�UT
+, only the diagonal term

remains, and we have UT	 j�−T�UT
+→ 1

Zj

�exp�−
 j	dk��kj�̂kj
+ �̂kj� as T→�.

Therefore, we choose the stationary state at t=0 as the
initial state. The density matrix of the total system is pre-
pared as the product of canonical distributions of the normal

modes Âkj�0�= �̂kj at mutually different inverse temperatures

 j, and partition functions Zj,
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	̂�0� =
1

Z1Z2 ¯ ZN
exp
− �

j=1

N


 j� dk��kjÂkj
+ �0�Âkj�0�� .

�19�

The partition functions Zj are the same as those of reservoirs
at t=−T. As already mentioned, the inverse temperature of
the system 
 disappears.

III. FLUCTUATION OF THE WORK-INDUCED ENTROPY
PRODUCTION

In order to define the entropy production, we decompose
the total Hamiltonian as

�
j=1

N � dk��kjÂkj
+ �t�Âkj�t� = �

j=1

N

Ĥj�t� ,

Ĥj�t� � � dk��kjÂkj
+ �t�Âkj�t� . �20�

The work externally done on the system is eventually trans-

ferred to Ĥj. Note that Ĥj is considered as Hamiltonian of a
subsystem including the reservoir rj, and Eq. �20� is a de-

composition to mutually independent subsystems �Ĥi , Ĥj�
=0. Let us denote the macroscopic eigenstates specified by

eigenenergies as Ĥj�s��Ej�s��=Ej�s��Ej�s��. It is remarked
that �Ej�s�� is composed of many Fock states, but in realistic
situation the determination of energy would be possible
within experimental precision. Therefore, we here assume
that projective measurement of eigenenergy is possible. In
this sense, the eigenenergy Ej�s� specifies the eigenstate.
Throughout this paper, the total system including the reser-
voirs is considered as an isolated system. Then the eigenen-
ergy change divided by the temperature gives a reasonable
estimate of the entropy production. The work-induced en-
tropy production is evaluated as


0
t = �

j=1

N


 j�Ej�t� − Ej�0�� . �21�

Note that the c number of Eq. �12� does not contribute to 
0
t .

The fluctuation of the entropy production 
0
t is defined as

�22–25,29,33�

P�
0
t = A� =� d�

2�
e−i�A Tr 	̂�0�exp
i��

j=1

N


 jĤj�t��
�exp
− i��

j=1

N


 jĤj�0��
= �

�Ej�0��,�Ej�t��

1

Z1Z2 ¯ ZN

� exp
− �
j=1

N


 jEj�0�����Ej�t����Ej�0����2��
0
t − A� ,

�22�

where �Ej�s�� denotes a set of eigenvalues of

Ĥ1�s� , . . . , ĤN�s�, and ��Ej�s����
 j=1
N �Ej�s��. Also, 	̂�0�

= 1
Z1,. . .,ZN

exp�−� j=1
N 
 jĤj�0�� represents the initial ensemble,

the transfer amplitude ���Ej�t�� � �Ei�0����2 accounts for the
unitary time evolution, and Dirac delta samples the trajecto-
ries with a particular value of entropy production 
0

t =A.
Then, the characteristic function is given by the Fourier
transform

���� � � dAei�AP�
0
t = A�

= Tr
1

Z1Z2 ¯ ZN
exp
− �

j=1

N


 jĤj�0��exp
i��
j=1

N


 jĤj�t��
�exp
− i��

j=1

N


 jĤj�0�� . �23�

As already shown by several authors �20–24� for the case of
single reservoir, the fluctuation theorem holds for the energy
change. Here, let us briefly summarize it for the case of
multiple reservoirs. First, the characteristic function is evalu-
ated as

���� = Tr
1

Z1Z2 ¯ ZN
exp
− �

j=1

N


 jĤj�0��
�exp
i��

j=1

N


 jĤj�t��exp
− i��
j=1

N


 jĤj�0��
= Tr

1

Z1Z2 ¯ ZN
exp
i��

j=1

N


 jĤj�t��
�exp
− �

j=1

N


 j�1 + i��Ĥj�0�� .

Then, by the change in the variable ��=�− i,

���� = Tr
1

Z1Z2 ¯ ZN
exp
− �

j=1

N


 jĤj�t��exp

− i���

j=1

N


 jĤj�0��exp
�
j=1

N

i��
 jĤj�t�� � �r�− ��� ,

�24�

where �r is the characteristic function for the energy change
in the time-reversed dynamics evolving with reversed pertur-
bation defined as fr�s�� f�t−s�, and starts from the ensemble

1
Z1¯ZN

exp�−� j=1
N 
 jĤj�t��. Then, the fluctuation of the energy

change divided by the temperature 
0
t obeys the symmetry

P�
0
t = A� =� d�

2�
e−i�A����

=� d�

2�
e−i�A�r�− � + i�

=� d��

2�
eAe−i��A�r�− ���
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= eAP�
̃0
t = − A� , �25�

where 
̃0
t �� j=1

N 
 j�Ej�0�−Ej�t�� is the entropy production as-
sociated with the time-reversed dynamics.

IV. NON-GAUSSIAN CHARACTERISTIC FUNCTION

In our soluble case, the characteristic function is directly
calculated. With the use of formula �A2� for a boson operator
�̂,

Tr e−
���̂+�̂ei�
����̂++u���̂+v�e−i�
���̂+�̂

=
1

1 − e−
��e−uv�ei�
��−1−��1 − e−i�
���2/�e
��−1���, �26�

the characteristic function turns out to be

log ���� = �
j=1

N �
0

t

ds�
0

t

ds�� dk
�ukj�2

��kj
2 ��+��kj��2

ḟ�s� ḟ�s��

�e−i�kj�s−s���ei�
j��kj − 1 −
�1 − e−i�
j��kj�2

e
j��kj − 1
� .

�27�

This characteristic function is the main result of the present

paper. Interestingly, the characteristic function interpolates
the Gaussian and Poissonian distribution at high- and low-
temperature regimes.

Before showing this temperature dependence, we have a
few remarks on statistical properties.

First, for slowly varying ḟ�t� compared to the reservoir

variables, ḟ�t� would be extracted from the double-integral

	0
t ds	0

t ds�
�ukj�2

��kj
2 ��+��kj��2

ḟ�s� ḟ�s��e−i�kj�s−s�� in the characteristic
function and the integral behaves as sin2��kj /2�t / ��kj /2�2

�2�t���kj� for sufficiently long times. Then the mean en-
tropy production is linear with respect to t.

Second, the characteristic function is invariant under the

time reversal operation ḟ →− ḟ . Then the forward and re-
versed characteristic function is identical,

���� = ��− � + i� . �28�

Indeed, it is straightforward to verify the symmetry by re-
placing � with −�+ i in the integrand of Eq. �27�

e−
j��kje−i�
j��kj − 1 −
2 − �e
j��kj − 1�ei�
j��kj − �e−
j��kj − 1�e−i�
j��kj − ei�
j��kj − e−i�
j��kj

e
j��kj − 1
= ei�
j��kj − 1 −

�1 − e−i�
j��kj�2

e
j��kj − 1
.

�29�

From Eq. �28�, fluctuation theorem is derived as

P�
0
t = A� =� 1

2�
e−i�A����d�

=� 1

2�
e−i�A��− � + i�d�

= eA� 1

2�
ei�A�r���d�

= eAP�
̃0
t = A� . �30�

From the characteristic function �27�, the first and the second
cumulants are

log ���� = i�m0,t −
�2

2
�0,t

2 + O��3� ,

m0,t = �
j=1

N �
0

t

ds�
0

t

ds�� dk

�

 j�ukj�2

�kj��+��kj��2
ḟ�s� ḟ�s��cos �kj�s − s�� ,

�0,t
2 = �

j=1

N �
0

t

ds�
0

t

ds�� dk

�

 j

2��ukj�2

��+��kj��2
coth


 j��kj

2
ḟ�s� ḟ�s��cos �kj�s − s�� .

�31�

Similarly, the odd- and even-higher order cumulants are
given as

�− 1�n−1i�2n−1

�2n − 1�! �
j=1

N �
0

t

ds�
0

t

ds�� dk
�ukj�2

��+��kj��2

�
 j
2n−1�2n−2�k

2n−3 cos �kj�s − s�� ḟ�s� ḟ�s�� ,

�− 1�n�2n

�2n�! �
j=1

N �
0

t

ds�
0

t

ds�� dk
�ukj�2

��+��kj��2

�
 j
2n�2n−1�kj

2n−2 coth

 j��kj

2
cos �kj�s − s�� ḟ�s� ḟ�s�� .

�32�

For the high-temperature limit, the mean and the variance
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become dominant, and the characteristic function tends to a
Gaussian distribution satisfying the semiclassical fluctuation
dissipation theorem, 2m0,t=�0,t

2 +O�
3�2�. On the other
hand, in the low-temperature regime, the characteristic func-
tion behaves as a Poissonian distribution.

For a multicomponent Poissonian distribution of integer
variables ki with arbitrary cumulants �i�i=1,2 , . . .�, let us
consider a stochastic variable 
��i�iki, where the coeffi-
cients �i are constants which corresponds to 
 j��kj. The
variables ki are interpreted as a number of events which oc-
curs during a time interval. Then the distribution function is

P�
 = A� = �
k1,k2,..,kn,..=0

�

���
j

� jkj − A�

i=1

�
��i�ki

ki!
e−�i

=� d�

2�
e−i�A �

k1,k2,..,kn,..=0

�



i=1

�
��i�kiei��iki

ki!
e−�i

=� d�

2�
e−i�A exp
�

n

�ei��n − 1��n� . �33�

Here, the second equality is obtained with the use of the
formula ��� j� jkj −A�=	 d�

2�exp�i��� j� jkj −A��. Actually, the
last term of Eq. �27� is exponentially small in the low-
temperature compared to the other two terms, resulting to
this characteristic function given as the integrand. In the
present case, the fluctuating quantity 
 just corresponds to
the work-induced entropy production 
0

t . The Poissonian dis-
tribution is intuitively reasonable, since the discreteness of
the spectrum for each mode is magnified by the large inverse
temperatures, 
 j��kjnkj, where the integer nkj is the eigen-
value of a number operator akj

+ akj.
In summary, we have prepared an initial nonequilibrium

stationary state, and externally perturbed the system by a
potential dragging. The work done on the system yields ther-

modynamic entropy production, which satisfies fluctuation
theorem. Furthermore, the quantum fluctuation amounts to a
non-Gaussian distribution of the entropy production evalu-
ated by the two-point measurement �27�, which satisfies
quantum fluctuation theorem for the external work-induced
entropy production. The distribution �27� interpolates the
Gaussian- and Poissonian-behaviors at high- and low-
temperature regimes.

V. DISCUSSION

We have explored the fluctuation of the work-induced en-
tropy production in the presence of multiple reservoirs. As a
reasonable quantity which characterizes the nonequilibrium
state, we defined the energy variations in normal modes di-
vided by the temperatures of the reservoirs, which are iden-
tical to that of the entropy production in the stationary state.

The energy variations in normal modes Ĥj�t� account for the
external work done, and the thermodynamic forces does not
appear in the characteristic functions. In this sense, 
0

t is
work-induced entropy production due to the external driving

ḟ , and the corresponding symmetry is considered as work-
fluctuation theorem.
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APPENDIX: CALCULATION OF THE SINGLE MODE
CHARACTERISTIC FUNCTION

In this appendix, we derive formula �26�. Let �̂ be a bo-
son annihilation operator ��̂ , �̂+�=1. With the use of coher-
ent states ���=�n

�n

n! ��̂
+�n�0�, the left-hand side of Eq. �26� is

calculated as

�
n

e−
���̂+�̂eu�̂−v�̂+
ei�
���̂+�̂e−u�̂+v�̂++uv/2e−i�
���̂+�̂

= �
n

e−�1+i��
��n�n�� d�1
e−��1�2

�
��1���1�e−u�1

�+v�1+�uv/2��
m

�m��m�ei�
��m� d�2
e−��2�2

�
��2���2�eu�2

�−v�2�n�

= �
n

e−�1+i��
��n� d�1� d�2
e−��1�2−��2�2

�2 �
m

��1�2
��n��1

��2�m

n ! m!
� e−u�1

�+v�2−v�1+u�2
�+i�
�m+uv

=� d�1

�
� d�2

�
e−��1�2−��2�2+e−�1+i��
���1�2

�+ei�
���1
��2−u�1

�+v�1+u�2
�−v�2. �A1�

Here, phase variables �1,2 run all the points of complex plane. The Gaussian integrals in the last line give

Tr
1

Z
e−
���̂+�̂ei���̂++u���̂+v�e−i�
���̂+�̂ = e−uv�ei�
��−1−��1 − e−i�
���2/�e
��−1���.
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